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Abstract Along the lines of the nonlinear response theory developed by Ruelle, in a previ-
ous paper we have proved under rather general conditions that Kramers-Kronig dispersion
relations and sum rules apply for a class of susceptibilities describing at any order of pertur-
bation the response of Axiom A non equilibrium steady state systems to weak monochro-
matic forcings. We present here the first evidence of the validity of these integral relations
for the linear and the second harmonic response for the perturbed Lorenz 63 system, by
showing that numerical simulations agree up to high degree of accuracy with the theoretical
predictions. Some new theoretical results, showing how to derive asymptotic behaviors and
how to obtain recursively harmonic generation susceptibilities for general observables, are
also presented. Our findings confirm the conceptual validity of the nonlinear response the-
ory, suggest that the theory can be extended for more general non equilibrium steady state
systems, and shed new light on the applicability of very general tools, based only upon the
principle of causality, for diagnosing the behavior of perturbed chaotic systems and recon-
structing their output signals, in situations where the fluctuation-dissipation relation is not
of great help.

Keywords Lorenz system - Non-equilibrium steady states - Ruelle response theory -
Kramers-Kronig relations - Sum rules - Axiom A - Singular hyperbolic system - Harmonic
generation - Susceptibility - Numerical simulation - Time series analysis - Spectrum -
Periodic forcing - Climate

1 Introduction

A rather wide class of physical problems can be framed as the analysis of the sensitivity
of the statistical properties of a system to external parameters, and, actually, such sensitivi-
ties often define physical quantities of great conceptual relevance, as in outstanding case of
Maxwell’s relations in classical thermodynamics. In this context, the response theory for-
malizes the thought experimental apparatus comprising of the system under investigation,
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of a measuring device, of a clock, and of a set of turnable knobs controlling, possibly with
continuity, the value of the external parameters.

In the case of physical systems near to an equilibrium represented by the canonical mea-
sure, Kubo [1] introduced a response theory able to describe up to any order of nonlinearity
the impact of weak perturbations to the Hamiltonian on the statistical properties of a gen-
eral observable. Apart from its profound theoretical value, the Kubo approach has allowed
for the definition of applicable tools for obtaining a systematic and detailed analysis of the
forced fluctuations due to weak external forcings, thus proving to be a suitable tool for a
comprehensive treatment of optical, acoustical, and mechanical phenomena [2].

The response theory recently developed by Ruelle [3, 4] for the description of the impact
of small, periodic perturbations on the statistical properties of a measurable observable of
an Axiom A dynamical system—whose attractor defines an SRB measure [5]—allows for
a generalization of the whole apparatus of the Kubo theory to the case of non-equilibrium
steady state statistical mechanical systems. The Kubo and Ruelle response theories are for-
mally rather similar, as in both cases the impact of perturbation can be expressed as the
expectation value of a specific operator over the statistical ensemble of the unperturbed
state, the main (crucial) diversity being, instead, in the properties of the probability measure
of integration.

In quasi-equilibrium statistical mechanics, it has been recognized that, thanks to the gen-
eral principle of causality of the response (see [6] for a detailed discussion of this point),
the linear and nonlinear generalized susceptibilities of the system, describing its response in
the frequency domain, feature specific properties of analyticity, allowing for the definition
of Kramers-Kronig (K-K) relations, connecting their real and imaginary parts, and for the
derivation of sum rules, which connect the response of the system at all frequencies to the
expectation value of specific observables at the unperturbed state [7—11]. These integral re-
lations play a crucial role in several research and technological areas, and most prominently
in condensed matter physics and material science [11, 12].

Recently, Ruelle [3] proved that in the case of Axiom A systems the fluctuation-
dissipation relation [13], cornerstone of quasi-equilibrium statistical mechanics, cannot be
straightforwardly extended to the non-equilibrium case, thus clarifying an earlier intuition
by Lorenz on the non equivalence between forced and free fluctuations in the climate sys-
tem [14]. In fact, whereas the free fluctuations of the system take place, by definition, on
the unstable manifold, the forced fluctuations, generically, do not obey such a constraint.
Instead, if one assumes, somewhat artificially, that the forcing acts only along the expanding
directions on the attractor, or that the invariant measure of the system is smooth along all
directions, the fluctuation-dissipation relation is obeyed [15].

Ruelle [3] also proved that in the case of perturbed Axiom A systems it is possible to
define a linear susceptibility which is analytic in the upper complex plane of the frequency
variable, and to derive rigorously K-K relations. More recently, building upon these results
and following [9, 11], in [16] it was shown that a large and well defined class of nonlinear
susceptibilities, including those responsible for harmonic generation processes at all orders,
obey generalized K-K relations and, additionally, sum rules can be established.

It is reasonable to expect that a larger set of dynamical systems than the Axiom A ones
obeys these properties, as recently suggested in the linear case by theoretical arguments
[17, 18] and by some rather convincing numerical simulations [19, 20]. Note that, never-
theless, results on Axiom A systems are already quite powerful in terms of practical ap-
plications, if one accepts the chaotic hypothesis by Gallavotti and Cohen [21], stating that
large systems behave as though they were Axiom A systems when macroscopic statistical
properties are considered.
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In this paper we present the first evidence of applicability of dispersion relations and sum
rules for a nonlinear susceptibility of a chaotic dynamical system. We consider a monochro-
matic (weak) external perturbation to the flow of the Lorenz 63 system [22], which is not an
Axiom A, but rather a singular hyperbolic system [23, 24]. First, we perform the analysis of
the linear response, thus providing an extension of the results presented by Reick [19]. Then,
we analyze the susceptibility describing the second harmonic response, providing a detailed
discussion of K-K relations and of the sum rules, where the outputs of the simulations and
the theoretical predictions are compared. Moreover, we define general, self-consistent alge-
braic relations connecting the harmonic generation susceptibilities of different observables
and specialize them for the Lorenz 63 perturbed system treated here.

The paper is organized as follows. In Sect. 2 we recapitulate the general theoretical back-
ground behind our analysis. In Sect. 3 we describe our simulations, discuss our experimental
procedure, present the mathematical tools for data analysis, and obtain from the general the-
ory specific results for the considered system. In Sect. 4 we describe our main findings. In
Sect. 5 we summarize our results and present our conclusions. In Appendix A we present the
formula for the first correction to the linear response. In Appendix B we show a procedure
for defining self-consistent relations connecting the harmonic generation susceptibilities of
various observables.

2 Theoretical Background

We consider the dynamical system X = F(x). We then perturb the flow by adding a time-
modulated component to the vector field, so that the resulting dynamics is described by
X = F(x) 4+ e(t) X (x). Following Ruelle [3, 4], in the case of a perturbation to an Axiom A
dynamical system, it possible to express the expectation value of a measurable observable
@ (x) in terms of a perturbation series:

(@)(1) = / po(dD)® + Y (@) (1). o)

n=1

where po(dx) is the invariant measure of the unperturbed system. The nth term can be ex-
pressed as a n-uple convolution integral of the nth order Green function with n terms, each
representing the suitably delayed time modulation of the perturbative vector field:

<o1>><”>(z)=/oo /w.../w doydo, ...do, G (01, ..., on)e(t —o)e(t — o) ...e(t —ay,).
—00 J —00 —00 (2)

The nth order Green function Gg')(al, ...,0y) is causal, i.e. its value is zero if any of the
argument is non positive, and can be expressed as time dependent expectation value of an
observable evaluated over the measure of the unperturbed statistical mechanical system:

Gy (o1,....00) = /po(dX)®(01)®(02 —01)...0(0, —0p-1)
x All(o, —0,,_1) ... All(03 — 01) ATl (07) P (x), 3)

where © is the Heaviside function, A (e) = X (x)V (e) describes the impacts of the perturba-
tive vector field, and IT is the time evolution operator due to unperturbed vector field so, that
[T(t)A(x) = A(x(t)) for any observable A. As discussed in [16], in the case of quasi equi-
librium Hamiltonian system po(dx) = p(x)dx corresponds to the usual (absolutely contin-
uous) canonical distribution, and the Green function given above is the same as that obtained
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in standard Kubo theory [1, 2]. Instead, in the more general case analyzed by Ruelle, po(dx)
is the singular SRB measure.
If we compute the Fourier transform of (®)”(¢) we obtain:

(DY (@) :/00 /00 dw, ...da)nxg') (@i, ...,00)e())...e(w,) x 8 (w— Zw;),
—00 —00 =1
(€]

where the Dirac § guarantees that the sum of the arguments of the Fourier transforms of the
time modulation functions equals the argument of the Fourier transform of (®)”(¢), and the
susceptibility function is defined as:

n 0 00 n
X((D") Za)j;a)l,...,w,, :/ / dtl...dt,,Gg)’) (t1, ..., 1) €xp iijtj
=1 —00 —00 =1

(&)
Whereas the Green functions describe coupling processes in the time-domain, this function
describes the impact of perturbations in the frequency-domain having frequency 27:1 w;j.

As discussed in [3], the linear susceptibility Xé,] )(a)) in an analytic function in the
upper complex @ plane, as a result of the causality of the linear Green function, so
that it obeys Kramers-Kronig relations [7, 8, 10]. Following [9, 11], in [16] it was shown
that xé")(na); w,...,w), responsible for nth order harmonic generation processes, fea-
tures the same analytic properties as the linear susceptibility. The asymptotic behavior of
Xé”) (nw; w, ...,w) is determined by the short-term response of the system, and it can be
proved that in general Xfl,") (nw; o, ..., o) ~aw P~ with ® — oo, with 8 > 0 and integer,
It is possible also to prove that, if 8 + n is even, & = g is real, whereas, if § + n is odd,
« =io is imaginary. The values of o and 8 depend on the specific system under investiga-
tion, on the considered observable, and on the order n of nonlinearity [16]. Therefore, since
all moments of the susceptibility have the same analytic properties, a large set of pairs of
independent dispersion relations is obtained:

7 ©  WPRe{xP (oo, ... @
—Ea)zl’_llm[)(g') (na);a),...,a))] :P/ do’ o ,(2 > )}, (6)
0 w” —w
T © WP P (e @, ..., o
—a)zl’Re{Xg’) (nw;w,...,w)] :P/ do’ o 2( )}, @)
2 0 W — w?
with p =0, ...,y — 1, in order to ensure the convergence of the integrals, with P indicating

integration in principal part. Note that, as widely discussed in [11, 16, 25], it is possible
to restrict the integration to the non-negative range as the reality of the response function
implies that x\’ (nw; o, ..., w) = [x& (—nw; —o, ..., —)]*. Comparing the asymptotic
behavior with that obtained by applying the superconvergence theorem [26] to the general

K-K relations (6)—(7), we derive the following set of vanishing sum rules:

o0
/a)’z”Re{Xg')(nw/;w',...,w')}dw/:0, O<p=<y-—-1, 3)
0
o0
/w/z”'lm[Xg)(nw/;w/,...,w/)]dw/=0, O<p=<y-2 ®
0
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If B +n =2y we obtain the following non-vanishing sum rule:

o0
14
/ o Im [)(é") (nos o, ..., w/)}da)’ =—ap—

, =y —1, 10
| 2 P=Y (10)

whereas, if B +n =2y — 1, the non-vanishing sum rule reads as follows:

o]
T
/0 a)’z”Re[)(én) (no'; o, ...,w/)}dw’zazi, p=y—1L (11)

3 Data and Methods

Following Reick [19], we perturb the y equation of the classical Lorenz 63 system with a
weak periodic forcing:

x=o0(y—x),
y=rx—y—xz+2ecos(wt)x, (12)
z=2xy— bz,

where 0 = 10, b = 8/3, r =28, w is the frequency of the forcing, and € is the parameter
controlling its strength. Note that Reick used € instead of 2¢; our choice will be motivated
later. With these parameter values, the (unperturbed, € = 0) classical Lorenz 63 system is
not Axiom A, as changes in the value of r cause sequences of bifurcations, which alter the
topology of the attractor. The investigation of the Lorenz 63 system has recently motivated
the definition of the class of singular hyperbolic systems, which basically include the 3D
Axiom A flows plus specific nonhyperbolic flows, such as the Lorenz 63 system [23, 24].
Nevertheless, we stick to the definition provided in (1) and define operationally the impact
of the perturbation flow on the observable @ (x) as follows:

8D (t, 1y, x9) = P (x(2, 19, x9)) — Do (x(2, 1o, X0)), (13)

where x¢ and 7y are the initial conditions and the initial time, respectively, and the pedix
refers to the strength of the forcing. We choose an initial condition belonging to attractor of
the unperturbed system and, without loss of generality, we set o = 0. Since the system is
chaotic, the Fourier Transform of §®.(z, #y, xo) has a continuous background spectrum, so
that, detecting and disentangling the response of the system to the w-periodic perturbation,
which results into peaks positioned at the harmonic frequencies mw, m > 1, is harder than
in the quasi-equilibrium case.

3.1 Linear and Nonlinear Susceptibility

Since e(t) = 2e cos(wt) = € (expliwt] + exp[—iwt]), we obtain that the linear susceptibility
can be expressed as:

xs) (@) = lim lim xo(w, xo, €, T), (14)
e—>0T—00
where
] T
Xo (@, %0, €, T) =+ [ dT8P. (1, o) explior] (15)
€Jo

contains information on the full response (linear and nonlinear) of the system at the fre-
quency of the forcing term. Note that, consistently with our definitions, there is a factor 2

@ Springer



386 V. Lucarini

of difference with respect to the (equivalent) expression given in [19]. The susceptibility
Xé,l) (w), when limits are considered, does not depend on x,. Whereas the € — 0 limit corre-
sponds to the physical condition of considering an infinitesimal perturbation, in the 7 — oo
limit the noise-to-signal ratio goes to zero. Of course, in reality for every simulation we can
measure x¢(w, Xo, €, T'), so that, as discussed in [19], T must be long enough for detecting
any signal for finite time series. The larger the parameter €, the better is the signal-to-noise
ratio, but, at the same time, the worse the validity of the linear approximation (and, in gen-
eral, of the perturbative approach).

As we wish to keep € as small as possible in actual simulations, and to avoid using very
long integrations, which may be problematic in terms of the computer memory, in order
to improve the signal detection we introduce an additional procedure based upon ergodic
averaging. For each frequency component of the background continuous spectrum, which is
related to the chaotic nature of the unperturbed dynamics, the phase of the signal depends
(delicately) on the initial condition xo. Since, instead, the phase of the response of the system
to the external perturbation is (asymptotically) well-defined (see (14)), by averaging the
susceptibility over an ensemble of initial conditions randomly chosen on the attractor of the
unperturbed system we can improve the signal-to-noise ratio. We then define:

1 K
xo(w, 6, T, K) = ng@p(w,xj,e,r>, (16)

where x; are random initial conditions belonging to the attractor of the unperturbed system,
such that:

Klim ch(w,e,T,K)Z/po(dx)m(w,x,e,T). (17)

Therefore, we choose x4 (w, €, T, K) as our best estimator of the true susceptibility bel) (w)
in all of our calculations.

We now propose some procedures for analyzing the nonlinear response of the system.
Probably, the two most relevant nonlinear phenomena usually observed in weakly perturbed
nonlinear systems are the correction to the linear response and the harmonic generation
process. The correction to the linear response, which is basically described by the third order
Kerr susceptibility, cannot be treated with the K-K formalism, as discussed in [9—11], so that
it will not be discussed further. Anyway, an operational definition of such a susceptibility is

provided in Appendix A.
We then focus on the lowest order nonlinear susceptibility responsible for nth order har-
monic generation is Xfp") (nw; w, ..., ) [11], which, as previously described, obeys an entire

class of K-K relations. Such a susceptibility gives the dominant contribution to the system
response at frequency nw, so that, along the lines of the formulas proposed for the linear
susceptibility, we define:

X (o o, ..., 0)=1im lim xe(nw, xo, €, T), (18)

e—>0T—o00
where
1 T
Xo(nw, xo, €, T)=—/ dtd®. (7, x0) explinwt]; (19)
€" Jo

note that with Reick’s parametrization of the periodic perturbation the factor before the
integral would be 2" /€". Following the same approach described in (16)—(17) for the linear
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case, we choose x¢(nw, €, T, K) as our best estimator for the actual nth order nth harmonic
generation susceptibility.

Reick [19] showed using symmetry arguments that if ® (x, y, z) = x¥y/z" with k+1 odd,
the linear response of the system to the periodic perturbation is vanishing. Therefore, as we
wish to join on the analysis of linear and nonlinear susceptibility and improve the work
by Reick, we stick to his approach and concentrate on the observable ®(x, y,z) =z. In
Appendix B, we show how results for harmonic generation susceptibility can be extended to
general (polynomial) observables, thus extending the result obtained by Reick for the linear
case.

Concluding, we wish to specify that all integrations of the system shown in (12) have
been performed using a Runge-Kutta 4th order method with € = 0.25 up to a time 7' = 5000.
For each of each of the considered values of w, which range from 0.0257 to 32w with
step 0.057, we have sampled the measure of the attractor of the unperturbed system by
randomly choosing K = 100 initial conditions. We have analyzed the linear response at the
same frequency w of the forcing plus the process of 2nd harmonic generation (n = 2).

3.2 Asymptotic Behavior, Kramers-Kronig Relations, and Sum Rules
The perturbation vector field introduced in the Lorenz 63 system (12) is X = (0, x, 0) and

the modulating function is e(t) = 2¢ cos(wt) = € (expliwt] + exp[—iwt]). Following (3), the
linear Green function Gg) (1) results to be:

600 = [ manemAn@e )

= / PAN)O (M) XV (x (1) = / Po(dn)© (1)xd, 2(0). (20)
Since
0 L ) ik+1
/_ O explion ~ K @1

the asymptotic behavior of the linear susceptibility is determined by the short term behavior
of the linear Green function. We then Taylor-expand z(7) in (20) in powers of t by consid-
ering the unperturbed flow, integrate over po(dx), and seek the lowest-order non-vanishing
term. We substitute z(t) =z 4+ 7z + o(7) in (3) and obtain:

GV (r) = / £0(dx)®(1)xdyz+T / £0(dx)© (7)x0y (xy —bz)+0(1) = O (7) (x*), +0(7),
(22)
where (e)g = [ po(dx)e. Since (x?); # 0, we have that:

1D (@) ~ = (%) J?, (23)

which implies that the real part dominates the asymptotic behavior, whereas the imaginary
part decreases at least as fast as w™>. This proves that the following K-K relations apply:

[ee] (1) /
T M _ Re{x;” ("}
T im {1 @)} =P /0 dof = 20, 24)
00 / (1) /
b4 ) _ ;o'Im{ " (o)}
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and that the following sum rules, obtained by considering the w — oo limit of the K-K
relations, are obeyed:

seR = [ Re " (@)} 4o’ =0, 26)
0

et = [t (@)} a0’ = 7 (), @
0

where the pedix in the name refers to the moment considered in the integration.

Regarding the second harmonic response, we have that by plugging the formula for the
second order Green function presented in (3) in (5), setting w; = w, = w, and substituting
11 =01 and T, = 0, — 01, we obtain the following expression for the susceptibility:

x& Qw: w, w) = / h / h d11d0 (1)) O (1) exp [i2w7 | exp [iwn ]
X /po(dX)AH(rz)AH(rl)CD(X)
= /OO /00 dr1d1, O (11)O(12) exp [i2wT; ] exp [iwT]

x / Po(dx)xd,x (11)3,2(11 + ). (28)

After a somewhat cumbersome calculation, performed along the lines of the linear case, we
obtain that, asymptotically,

X(z) Qw; w,w) ~ 0o (x2)0 /w4. (29)

As in the linear case, the real part dominates the asymptotic behavior. Note that the calcu-
lation of asymptotic behavior for specific susceptibilities can be made much easier by using
the recurrence relations presented in Appendix B.

We then obtain that the following set of generalized K-K relations are obeyed by the
second harmonic susceptibility:

) 12p @ (20
T, ;0 " Re{x,” 2w}
_sz,, 'Im {x Qw)} =P /0 do/ ——3= (30)
00 /2p+11 2) 2 /
szpRe{X7(2) Qw)) =P/ o' ® m{x:”( a))}’ 31)
2 ‘ 0 @? — w?

with p =0, 1, where we have slightly simplified the notation. Note that, in this case, two
independent pairs of dispersion relations can be established. When considering the w — oo
limit of the K-K relations, the following vanishing sum rules can be derived:

(o]

SRRy = /0 dw'Re {x? (2')} =0, (32)
(o]

w1 = [ dwo/tm {1 (201)} =0, 63)
0
[e]

SRRy = f do'e"Re {x{? (20)} =0, (34)
0
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whereas the only non-vanishing sum rule reads as follows:

oo
SRI? = /0 do'o’Im {2 (20)} = = Z 0 (%), (35)
In actual applications in data analysis, both K-K relations and sum rules are negatively
affected by the unavoidable finiteness of the spectral range considered. Whereas the zero-
order solution to this problem is to truncate the integrals at a certain cutoff frequency weuoff,
more advanced processing techniques [27-29] have been introduced in order to ease this
problem, which, when only a rather limited frequency range can be explored, can greatly
decrease the efficacy of the dispersion theory.

4 Results
4.1 Linear Susceptibility

In Fig. 1 we present the measured x" (w) resulting from the definition and practical proce-
dure described in (14)—(17). We observe as distinct features a peak in the imaginary part of
the susceptibility and a corresponding dispersive structure in the real part. Good agreement
with [19] is found. The resonant frequency 27 v, with v, ~ 0.9 roughly corresponds to the
frequency dominating the autocorrelation spectrum of the z variable (not shown). Neverthe-
less, the autocorrelation spectrum of z does not provide an information equivalent to what

—Re(x(w))
— m{x}\"(w)}

2+

4t 4

-1

10 10° 10’ 10°

Fig. 1 Linear susceptibility for the observable ® = z. Note the typical joint spectral features of resonance
(imaginary part) and dispersion (real part)
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— W)
— (z%)o/w?

-3 L L P | L L P R |

10” 10° 10’ 10°

w

10

Fig. 2 Asymptotic behavior of the absolute value of the linear susceptibility. The agreement with the theo-
retical prediction ~ (xz)ow_z is apparent

described by the linear susceptibility, because it captures only the fluctuations occurring
along the unstable manifold of the attractor. Similar considerations, albeit is a slightly dif-
ferent perspective, can be found in [15]. The features of the susceptibility presented in Fig. 1
are in good qualitative agreement with the (proto)typical structures of the linear susceptibil-
ity of a forced damped Lorentz linear (or weakly nonlinear) oscillator model, having natural
frequency wy = 27 v, [30], even if, in this case, the amplification of the linear response does
not result from a deterministic, mechanical resonance.

The observed asymptotic behavior is in agreement with what obtained in (23). In Fig. 2
we show that for @ > 30 we have | Xz(l)(a))| ~ (x2)o/w?* within a high degree of accuracy.
This result allows for the actual application of the K-K relations given in (24). Obviously,
we deal with a finite frequency range, while (24) requires in principle an infinite domain
of integration. Whereas more efficient integration schemes and data manipulation could
be envisaged and implemented, such as those described in [27-29], or, more simply, the
consideration of the asymptotic behavior, we simply truncate the dispersion integrals shown
in (24) at the maximum frequency considered in our simulations we,,sr ~ 100. We present
the result of such a simple Kramers-Kronig analysis for the linear susceptibility in Fig. 3.
Note that, given the relatively slow asymptotic decrease, only one pair (p = 0, see pedix
in the legend of Fig. 3) of K-K gives convergence. We observe that the agreement between
the reconstructed and the measured susceptibility is outstanding almost everywhere in the
spectrum, with the only exception being the slight underestimation of the main spectral
features, which is somewhat physiological as we are treating integral relations, which tend
to smooth out the functions.
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-1

10 10° 10’ 10°

Fig. 3 Reconstruction of the linear susceptibility with Kramers-Kronig relations. The agreement with the
measured susceptibility presented in Fig. 1 is remarkable, except for the slight underestimation of the local-
ized spectral features

In Fig. 4 we plot the cumulative value of the integrals of the sum rules given in (26)—(27)
up to w4y The sum rule of the real part of the susceptibility converges to zero as predicted
by the theory: extending the w,,,, range in Fig. 4 and considering the asymptotic behavior,
the curve approaches the x-axis. Moreover, the first moment of the imaginary part, which in
the case of optical systems corresponds to the spectrally integrated absorption, converges to
the predicted value 77 /2(x?)o. This implies that, in principle, the measurement of the linear
response of the system at all frequencies allows us to deduce the value of an observable
of the unperturbed flow. This class of results are widely discussed and have been widely
exploited in the optical literature [11, 12], where quasi-equilibrium systems are considered.

4.2 Second Harmonic Generation Susceptibility

Rather positive results have been obtained also when considering the second harmonic gen-
eration susceptibility. The observed asymptotic behavior is in excellent agreement with what
predicted in (29): in Fig. 2 we show that for @ > 20 we have |x!? 2w)| ~ o (x%)o/w*.
Therefore, in this case we try to verify the two pairs of independent K-K relations given
in (30)—(31) by performing the numerical integration along the lines described in the linear
case. Results are presented in Fig. 6 for the real part and in Fig. 7 for the imaginary part
of the susceptibility, where for simplicity only the main spectral features are presented. We
observe that the agreement between the measured and K-K reconstructed susceptibility is
quite good for both the p =0 and the p = 1 dispersion relations, except for the presence of
overly smoothed spectral features and, in the p = 1 case, for the low frequency divergence.
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-1 0 1 2
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wmaz

Fig. 4 Cumulative value of the sum rules given in (26)—(27) with upper integration limit set to w4y . The
extrapolation to infinity is in excellent agreement with the theoretically predicted values

Such a pathology is typical of higher-order K-K dispersion relation, whose integrals feature
a slower convergence, and can be cured by extending the investigated spectral range (see
discussion in [11, 31]). Anyway, these results are very encouraging and pave the way to
the detailed analysis of the spectral properties of higher order response of perturbed chaotic
systems.

An old tale of nonlinear optics in solids says that, near resonance, the second harmonic
susceptibility can in general be approximated according to the Miller’s rule as follows:

x? o)~ AG xV 2w) xP (@) = x® Qo) g, (36)

where Aﬁ) is the so-called Miller’s Delta, which is related to the nonlinearity of the poten-
tial of the specific crystal under investigation [11]. The Miller’s rule, which can be extended
also for higher-order harmonic generation processes, is related to the perturbative nature
of harmonic generation processes [30]. We have constructed the Miller’s rule approxima-
tion to the second harmonic susceptibility, and results are also shown in Figs. 6-7, with
Aﬁ) ~ —1/3. The agreement is very surprising, and confirms that the functional form of the
harmonic generation susceptibility is of very general character. Moreover, the Miller’s rule
can be very helpful in studying harmonic generation processes when only a limited amount
of data on the nonlinear processes can be directly obtained from observations.

The final step of this work has been the verification of the sum rules shown in (32)—(35).
The first two sum rules are presented in Fig. 8, where we plot the cumulative value of the
integrals in (32)—(33) up to w,,... We observe that, as predicted by the theory, the integrals
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Fig. 5 Asymptotic behavior of the absolute value of the second harmonic susceptibility. The agreement with
the theoretical prediction ~ o (xz)ow_4 is apparent

converge to 0 with a rather satisfying accuracy as w,,, goes to infinity. The other two sum
rules given in (34)—(35), which are typical of the second harmonic generation susceptibility
(no convergence is obtained in the linear case), are instead shown in Fig. 9. The second
moment of the real part integrates to zero with high accuracy, whereas the third moment
of the imaginary part converges to the value — /20 (x?), as predicted by the theory. This
confirms that a we have obtained a complete and self-consistent picture of second harmonic
response.

Note also that, by combining (35) and (27), we can deduce the value of o, which is
a fundamental parameter of the Lorenz 63 system, independently of the specific attractor
properties (which are implicitly contained in the value of (x2)¢). This confirms that a detailed
analysis of the response of the system to an external perturbation can in principle provide
rather fundamental information on the structure of the unperturbed system.

5 Conclusions

This paper takes advantage of the scientific results obtained within various stream of re-
search activities, such as the results by Ruelle on the linear and nonlinear response function
for non equilibrium steady state chaotic systems [3, 4], the related theoretical contributions
of the author on the general theory of dispersion relations [16], the numerical experimenta-
tions by Reick [19], the procedures for the spectral analysis of the linear [12] and nonlinear
susceptibility in optical systems [11], and provides the first complete analysis of the spectral

@ Springer



394 V. Lucarini

2 L} T T T T
' —Re{x"(2w)}
: — Re{x\"(2w)}k k0
157 ' == =Re{x®(2w)} k1
! —Re{x}”2w)} i
1 : J
1
1 n .
05" | voao .
LT n
L
“II - 1
0 I"' 1 'o,, -
Fr/\- i' ::.a r‘
1
1
~0.5F : 1
1k -
-1.5r N
_2 | | | | | | | | | | | | |

1 1
0 5 10 15 0 5 10 15 8 5 10 15 0 5 10 15

Fig. 6 Real part of the second harmonic generation susceptibility in the resonance region. From left to right:
measured susceptibility, reconstructed susceptibility via K-K relations with o = 0, reconstructed suscepti-
bility via K-K relations with o = 1, reconstructed susceptibility via Miller’s Rule approach. Agreement is
remarkable

properties of the linear and nonlinear response of a chaotic model—the celebrated, proto-
typical Lorenz 63 system—to an external, periodic perturbation.

We have first provided a definition of the nth order (n > 1) harmonic generation suscep-
tibility for the response of an generic observable to the external field perturbing the flow of
the Lorenz 63 system and defined a practical procedure to extract it from the time series re-
sulting from numerical integrations, which includes the computation of ensemble averages
of the Fourier transform of the signal. Ensemble averaging drastically decreases the noise
due to the internally generated variability of the system due to the chaotic behavior. A simple
way for characterizing and computing the correction to the linear response due to finiteness
of the perturbative forcing has been provided in Appendix A.

We have then shown how to theoretically compute ab initio, starting from the perturbative
Green function, the asymptotic behavior of the linear and second harmonic generation sus-
ceptibility of the observable ® = z, and how to define the set of Kramers-Kronig relations
and sum rules the susceptibilities have to obey. Moreover, in Appendix B, have presented
a set of general self-consistency relations allowing a for a extensive generalization of the
obtained results.

The results of the numerical simulations have shown that linear susceptibility features a
strong resonance (peak for the imaginary part—dispersive structure for the real part) cor-
responding to the dominant frequency component of the z autocorrelation spectrum. The
linear susceptibility, as predicted by the theory, decreases asymptotically as ~ —(x2)ow >
and obeys K-K relations up to a very high degree of accuracy. Moreover, whereas the spec-
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Fig. 7 Imaginary part of the second harmonic generation susceptibility in the resonance region. From left to
right: measured susceptibility, reconstructed susceptibility via K-K relations with & = 0, reconstructed sus-
ceptibility via K-K relations with & = 1, reconstructed susceptibility via Miller’s Rule approach. Agreement
is remarkable

tral integral of the real part of the susceptibility is found to be vanishing, the first moment of
the imaginary part converges to m/2(x?)y, in agreement with the theoretical results. These
results extend and give a more solid framework to the findings by Reick [19].

The results of the numerical simulations are in excellent agreement with the theory devel-
oped also when the second harmonic process is considered. The second harmonic suscepti-
bility decreases asymptotically ~ o (x?)ow ™, and obeys precisely K-K relations. Moreover,
thanks to the fast asymptotic decrease, K-K relations can be established for and are obeyed
by the second moment of the second harmonic susceptibility. The resulting sum rules—
zeroth and second moment of the real part, first and third moment of the imaginary part are
precisely obeyed by the measured susceptibility, with the former three being vanishing, and
the last one converging to —m /20 (x?)o. Therefore, by combining the two non vanishing sum
rules for linear and second harmonic susceptibility, one could in principle not only obtain
information on the expectation value of an observable (specifically, x2) at the unperturbed
state, but also the on value of one of the parameters of the Lorenz 63 system (o).

It should also be noted that, by taking the logarithm of the susceptibility, it is possible
to prove that K-K relations connect the logarithm of the absolute value of the susceptibility
and the phase of the susceptibility [11]. Therefore, a complete information of the system
response to periodic perturbation can be obtained also when only the absolute value of the
susceptibility or, alternatively, its phase can be measured on a reasonably wide spectral
range.
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Fig. 8 Cumulative value of the first two sum rules given in (32)—(33) with upper integration limit set to
wmax - The extrapolation to infinity is in excellent agreement with the predicted values

We have presented the first detailed theoretical analysis and numerical evidence of the
validity of Kramers-Kronig relations and sum rules for the linear and the second harmonic
response for the perturbed Lorenz 63 system. Our findings confirm the conceptual validity
and applicability of the linear nonlinear response theory developed by Ruelle. As the rigor-
ous theory basically deals with perturbations to an Axiom A system featuring an attractor
with an SRB measure, the procedures defined and the results obtained here have to be con-
sidered as heuristic, but, possibly, robust enough to be indicative of future research activities,
both along more mathematically and physically oriented lines.

The analysis of the Lorenz 63 system has motivated the introduction of a weaker form of
hyperbolicity, the so-called singular hyperbolicity. Singular hyperbolic systems constitute a
generalization of 3D Axiom A flows and include also nonhyperbolic elements resembling
the Lorenz-like attractors or the singular horseshoes [23, 24]. More recent results seem to
show that singular hyperbolic systems feature most of the properties, in terms of ergodic
theory, of Axiom A flows [32, 33], such as sensitive dependence on initial conditions, prop-
erties of the invariant measure, etc. Therefore, our results may stimulate the investigation of
whether a response theory can be rigorously established for these systems.

Since the fluctuation-dissipation relation cannot be used straightforwardly in non equi-
librium steady state systems, in spite of several attempts in this direction (e.g. see some ex-
amples in fluidodynamics and climate [34, 35]), due to non equivalence between forced and
free fluctuations, dispersion relations, which are based only upon the principle of causal-
ity, should be seriously considered as tools for diagnosing the behavior of these systems,
understanding their statistical properties, and reconstructing their output signals.
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Fig. 9 Cumulative value of the last vanishing sum rules given in (34) and of the non-vanishing sum rule
given in (35) with upper integration limit set to wyqx . The extrapolation to infinity is in excellent agreement
with the predicted values

In particular, whereas in climate science the common strategy of relating spatial-temporal
climate change patterns to the patterns of natural climate variability [36] should at this point
be revised, the formalism of the response function could play a role for defining in general
terms—and actually computing explicitly, using (3) with n = 1—the linear sensitivity of the
climate system to general forcings featuring any time-modulation. In this context, dispersion
relations would be crucial tools for detecting and testing possible resonances of the climate
system, understanding in greater depth the dynamical processes involved in climate change,
also in a paleoclimatological perspective [37], as well as for developing advanced tools for
climate models validation [38, 39]. As a step in this direction, the author foresees adopting
the mathematical tools presented in this paper for analyzing the response of a simplified
climate model (see e.g. [40]) to various kinds of perturbations.

Acknowledgements This paper is dedicated to the memory of E.N. Lorenz (1917-2008), a gentle and
passionate scientific giant who, one day, encouraged the author—then a grad student—to read something
about chaos, and came back after a minute with a precious book in his hands.

Appendix A: Correction to the Linear Response: Kerr Term

The lowest order correction to the linear response of the system at frequency w can be
expressed as a third-order term, responsible for what in optics is called the Kerr effect [11].
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The corresponding nonlinear susceptibility xg)(w, —w, w) can operationally be defined as:

1
[ : : (1)
Xo (W0, —w,w) = 11%#220 2 [ch(a), X0, €, T) — Xo (CU)]' (Al)

Since the € — 0 limit is not attainable in reality, a good approximation to the Kerr suscepti-
bility can be expressed as follows:

1
x& (@, —w, w) ~ = (e, €1, T, K) = (@, €, T, K)), (A2)
1

with €, < €;. This term is responsible for the difficulty encountered by Reick [19] in defin-
ing an e-independent linear susceptibility. As well known [9-11, 29], the Kerr term does not
obey K-K relations, and other techniques, such as maximum entropy method, are needed to
obtain the real part of the susceptibility from the imaginary part or viceversa [11]. This has
been confirmed in the present investigation (not shown), where the Kerr susceptibility has
been constructed via (A2) using €; = 1 and €, = 0.25.

Appendix B: Response Function for General Observables

If we perform integration by parts in (18)—(19), we obtain that:
—nia)xfp")(na);w,...,w):xé")(nw;a),...,a)), B1)

where the linear case is obtained by setting n = 1. Let’s consider ® = x*y’z" and substitute

the limit presented in (18)—(19) for the second member:

—nla)xk 1 nw;o, ..., o)

1 (7 d
= lim lim — / dfd—é[xk y'z" (2, x0)] explinwt]
0 T

T—o0e—0 €

1 T
= lim lim—/ dr{k[F + () X 18[x* ' y'2" (z, x0)]
0

T—o00e—0 €

+I[Fy 4 e() X, 18[x*y' 2" (z, x0)] + m[F. + e(t) X 18[x*y'z" ' (v, x0)1} explinwr]

1 T
= lim hm—/ dr{koS[xk I 2 (2, x0)] — ko 8[xky m(r,xo)]}exp[ina)r]
0

T—ooe—0 €

1 T
+ lim lim — / dr{irs[x 'y 12 (7, x0)] — 18[x*y' 2" (7, x0)1} explinwr]
0

T—o00e—0 €

1 T
+ lim lim — / dr{—18[x* 1y~ (7, x0)]
0

T—o0e—>0 €

+md[x* !y 2" (1, x0)]} explinwt]

1 T
+ lim lim—n/ dr{ mb5[xk L7 (x, xo)]}exp[lnwr]
0

T—o00e—0 €

1 T
+ lim lim—/ dr{le(exp[lwt]—i—exp[ 1a)t])8[xk+1 =, xo)]}exp[lnwr]
T—o00e—0 € 0
(B2)
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where the pedices k, I, m refer to the monomial x*y'z" defining the observable. In (B2) we
have used explicitly the perturbed Lorenz 63 flow given in (12) in order to compute the
derivatives. The last term of the summation in the second member of (B2) can be rewritten
as:

1 T
lim lim — / dr {18[x**1y" =" 2" (z, x0)1} expli(n + D]
0

T—o0e—0 €~

1 T
+ lim lim — [ dz {I8[x"*'y'~"2" (7, x0)1} expli(n — Dort]. (B3)
0

T—ooe—0 €™

The first term is vanishing (the value of the integral ~ €"*! as it corresponds to an n + 1th
order harmonic generation process), whereas the second term is just / times the sus-
ceptibility descriptive of the process of n — 1th harmonic generation for the observable
& = x**+1y!=1zm Substituting the definition given in (3) in (B2), we obtain:

(ko +14+bm — nia))x,i?m (nw)
= ko—X/frl)LH—l.m (nw) + lrxlgl-:—)l,l—l,m (nw)
- ZXk(i)l,l—l,erl (nw) + mxk(i)l,l+l,m71 (nw) + le(’Jlr_l,ll)fl,m((n — Do), (B4)

which generalizes the n = 1 case presented in Reick [19] at all orders of nonlinearity. Ob-
viously, this procedure can be generalized to any dynamical system perturbed with any sort
of periodic perturbation field, and allows for defining several self-consistency relations (see
the second line of (B2)).

As (Bl) can be easily generalized to all orders of derivatives k as
(—niw)mxé")(nw; ®,...,0) = Xs;f;dtkm(nw; w,...,w), it is possible to define a class of
consistency relations analogous to that presented in (B4). Nevertheless, one must be aware
that the number of terms involved in these relations grows exponentially with the degree k
of the derivative considered.
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